Measured between November - December 2011

Reciver
Frequency
[GHz]
HPBW
[arcsec]
Main Beam
Effic [%]
Aperture
Effic [%]
Calib.
source
EL comments

S80 86 19.2+-0.2 34+-2 27+-1 Mars 49 - 50
3C279 34 - 38
110 16.3+-0.3 27+-2 18+-1 Mars 35 - 42
3C279 46 - 47
115 15.6+-0.1 22+-2 15+-1 Saturn 46 - 49
3C279 43 - 45

S100 86 18.4+-0.3 38+-2 32+-2 Mars 49 - 50
3C279 34 - 38
110 15.6+-0.3 36+-3 26+-2 Mars 35 - 42
3C279 46 - 47
115 15.2+-0.3 29+-2 20+-2 Saturn 46 - 49
3C279 43 - 45

T100(H) 86 18.9+-0.3 43+-3 35+-2 Mars 48 - 46
3C279 39 - 42
110 17.3+-0.3 43+-3 35+-2 Mars 46 - 42
3C279 39 - 42
115 16.6+-0.5 33+-3 19+-2 Mars 50 - 49
3C279 48 - 46

T100(V) 86 19.2+-0.2 40+-2 30+-2 Mars 48 - 46
3C279 39 - 42
110 16.2+-0.2 40+-2 30+-2 Mars 46 - 42
3C279 39 - 42
115 14.6+-0.4 30+-2 23+-1 Mars 48 - 46
3C279 48 - 46

*) Slightly modified on May 22, 2013.
**) The values for TZ1(V) at 86 GHz should be similar to the corresponding values of the TZ1(H) receiver.

The error of the efficiencies is mainly due to uncertainty of brightness temperature of the planet.

  1. Brightness Temperatures (Tb) of the Source (We used temperatures compiled by Shibata 1990)
  2. Saturn Mars
  3. Diameter of the Planet
  4. The value is taken from the ASTRONOMICAL ALMANAC.
    In the case of Saturn, the diameters in the polar and equatorial directions are significantly different. In Japanese Ephemeris, only the radius in the polar direction is listed. Therefore, a correction is done with the ratio (1.12) of the diameters in the two directions. The effective diameter is calculated with a formula below:
    2 x (1.12 x polar radius x polar radius) 1/2.

  5. References

2012-02-09